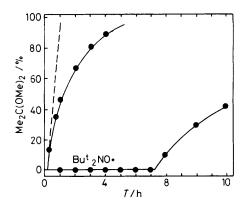
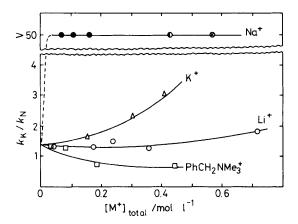
Influence of Solvent and Counterion in the Reactions of Alkoxide lons with the 2-Nitropropan-2-yl Radical

Glen A. Russell* and Woonphil Baik


Department of Chemistry, Iowa State University, Ames, Iowa 50011, U.S.A.

Photostimulated free radical chain reactions between alkoxide ions derived from primary alcohols and XCMe₂NO₂ (X = Cl, Br, NO₂, PhSO₂, N₃, or *p*-ClC₆H₄S) occur to produce Me₂C(OR)₂ by a reaction involving the trapping of Me₂C(NO₂)· by RO⁻, the decomposition of ROCMe₂NO₂·- to ROCMe₂·, and the oxidation of ROCMe₂· to Me₂C=OR+ by XCMe₂NO₂.


Carbon-, sulphur-, and phosphorus-centred nucleophiles are known to participate in photostimulated $S_{\rm RN}$ 1 chain reactions with α -substituted nitroalkanes (*e.g.* XCMe₂NO₂ with X = Cl, Br, NO₂, SO₂Ph, SAr, N₃) in which Me₂C(NO₂)· is trapped by the nucleophile to yield the radical ion of the substitution product.^{1,2} However, oxygen-centred nucleophiles are generally considered to be unreactive in such processes. We have found that alkoxide ions derived from primary alcohols will trap Me₂C(NO₂)· but that the resulting Me₂C(NO₂)OR·undergoes fragmentation into Me₂C(OR)· and NO₂⁻. Thus, photostimulated reaction (1) occurs with R = Me, Et, Buⁿ, 2-methoxyethyl, or allyl, and with X = Cl, Br, NO₂, PhSO₂, N₃, or *p*-ClC₆H₄S (Table 1). Similar reactions occur for MeCCl₂NO₂, PhC(Br)(SO₂Ph)NO₂, and cyclo-C₃H₅C(Me)-(Cl)NO₂ to yield MeC(OMe)₃ (56%), PhC(OMe)₃ (48%), and cyclo-C₃H₅C(Me)(OMe)₂ (68%), respectively.

The reactions do not occur in the dark or in the presence of oxygen and can be inhibited for discrete periods of time by $(Bu^t)_2NO^2$, see Figure 1.⁺ The rate of disappearance of

[†] Measured initial kinetic chain lengths (k.c.l.) (initial reaction rate/rate of initiation) were greater in EtOH than MeOH and greater for K⁺ than Na⁺. With 0.1 M-BrCMe₂NO₂ and 0.2 M-ROM, the measured k.c.l. were NaOMe (10); KOMe (75); NaOEt (38); KOEt, (171). Initiation rates were approximately the same with K⁺ and Na⁺, but were greater in MeOH than in EtOH.

Figure 1. Photostimulated reaction of $BrCMe_2NO_2$ (0.10 M) with MeOK (0.20 M) in MeOH in the absence and presence of But_2NO^{-1} (0.010 M). The two experiments were performed under the same irradiation conditions at 350 nm in a Rayonet Photoreactor at 35 °C.

Figure 2. Photostimulated reaction of BrCMe₂NO₂ with MeO⁻ and Me₂C=NO₂⁻⁻ in MeOH at 35 °C; \bigcirc , \bigoplus , \triangle , \square , \otimes , [MeO⁻M⁺]₀ = [Me₂C=NO₂⁻⁻M⁺]₀ \approx 1.5 [BrCMe₂NO₂]₀; \bigoplus , [MeO⁻M⁺]₀ = [Me₂C=NO₂⁻⁻M⁺]₀ = 3 [BrCMe₂NO₂]₀; \otimes , 0.42 M-NaClO₄ added.

XCMe₂NO₂ is equal to the rate of appearance of Me₂C(OMe)₂, and no intermediate, such as the unknown MeOCMe₂NO₂, can be detected by ¹H n.m.r. in CD₃OD. The yield of the ketal is greatly reduced by the presence of Me₂C=NO₂M (M = Li, K, PhCH₂NMe₃) or 4 equivalents of an electron-rich alkene such as CH₂=C(OMe)Ar (Ar = Ph, p-MeOC₆H₄). These observations are consistent with a free radical chain mechanism (reactions 2–5) in which the neutral

$$2 \text{ RO}^- + \text{XCMe}_2 \text{NO}_2 \xrightarrow{hv} \text{Me}_2 \text{C}(\text{OR})_2 + \text{X}^- + \text{NO}_2^- (1)$$

$$XCMe_2NO_2 \cdot \overline{} \longrightarrow Me_2C(NO_2) \cdot + X^-$$
(2)

$$\operatorname{Me}_2\operatorname{C}(\operatorname{NO}_2)$$
 + $\operatorname{RO}^- \longrightarrow \operatorname{ROCMe}_2\operatorname{NO}_2$ (3)

$$ROCMe_2NO_2 \cdot - \longrightarrow ROCMe_2 \cdot + NO_2^{-}$$
(4)

$$ROCMe_2 + XCMe_2NO_2 \longrightarrow Me_2C=OR^+ + XCMe_2NO_2 \xrightarrow{(5)}$$

$$MeO^{-} \xrightarrow{k_{a}} MeOCMe_{2}NO_{2}^{\cdot -} \xrightarrow{k_{d}} \rightarrow \rightarrow \mathbf{K}$$

$$Me_{2}C(NO_{2})^{\cdot} + Me_{2}C=NO_{2}^{-} \xrightarrow{k_{N}} \mathbf{D}^{\cdot -} \xrightarrow{-e} \mathbf{D}$$
Scheme 1

Table 1. Photostimulated reactions of $Me_2C(NO_2)X$ with $MeONa-MeOH^a$

Х	$T/{ m h}$	Yield of $Me_2C(OR)_2/\%$
Br	5 (dark)	0
Br	5	96
NO_2	12	84
PhSO ₂	5	82
N ₃	24	74
p-ClC ₆ H ₄ S	2	11

^a $[Me_2C(NO_2)X]_0 0.1 \text{ M}$, $[MeONa]_0 0.2 \text{ M}$. Reactions were irradiated in a Rayonet Photoreactor (350 nm) at 40 °C.

radical ROCMe₂· is oxidized to the cation by $XCMe_2NO_2$. The presence of the alkoxy substituent undoubtedly provides a driving force for both reactions (4) and (5) by stabilization of ROCMe₂· and Me₂C=OR⁺.

Competition between MeOK and Me₂C=NO₂K for $Me_2C(NO_2)$ yields mixtures of $O_2NCMe_2CMe_2NO_2$ (**D**) and $Me_2C(OMe)_2$ (K) in MeOH but only D in Me₂SO. The ratio **K**: **D** is consistent with Scheme 1 in which ion pairing and/or hydrogen bonding favours the formation of the ketal. The relative reactivity of MeO- and Me₂C=NO₂- towards $Me_2C(NO_2)$ was evaluated from the product yields by the rate expression $k_{\rm K}/k_{\rm N} = \log([{\rm MeO^-}]_{\rm f}/[{\rm MeO^-}]_{\rm 0}/2\log$ $([Me_2C=NO_2^-]_f/[Me_2C=NO_2^-]_0)$, where $[MeO^-]_f = [MeO^-]_0$ $-2[\mathbf{K}], [Me_2C=NO_2^-]_f = [Me_2C=NO_2^-]_0^-[\mathbf{D}], \text{ and } k_{\mathbf{K}} = k_a k_d/(k_{-a} + k_d).$ With \mathbf{K}^+ as the counterion, the relative reactivity thus measured was independent of $[BrCMe_2NO_2]_0$, the extent of the reaction, of the initial ratio of the nucleophiles (Figure 2). While some variation in $k_{\rm K}/k_{\rm N}$ is observed, the effect of the concentration of K⁺, Li⁺ or PhCH₂NMe₃⁺ upon the relative reactivity is not particularly important in MeOH ($k_{\rm K}/k_{\rm N} = 2 \pm 1$). However, with Na⁺ in MeOH the relative reactivity is 50:1 (no D observed). Apparently, specific ion pairing effects with Na+ in MeOH greatly lowers the reactivity of Me₂C=NO₂⁻ relative to MeO⁻.§

Electron-rich alkenes, such as $CH_2=C(OMe)Ar$, will trap $Me_2C(NO_2)$ as shown by a greatly decreased yield of **K** or **D** in competitive reactions with NaOMe. KOMe, or $Me_2C=NO_2K$. These observations exclude the formation of $MeOCMe_2NO_2$ by an $S_{RN}2$ process $(BrCMe_2NO_2)^{-+}$ + MeO^{-} not involving the formation of free $Me_2C(NO_2)^{+.5}$

 $[\]ddagger$ In radiolytic processes, RĊHOH and RĊHOR' are oxidized by nitrobenzene or C(NO₂)₄ via the formation of a nitroxide intermediate.³

[§] In the competition between nucleophiles for $Me_2C(NO_2)$, preferential ion-pairing with Li⁺ in Me₂SO causes a considerable decrease in the reactivities of $RC(CO_2Et)_2^-$ and $(EtO)_2PO^-$ relative to $Me_2C=NO_2^{-.4}$

However, in the presence of enol ethers there was no evidence of product formation *via* electron transfer from the expected adduct radicals ($O_2NCMe_2CH_2\dot{C}(OMe)Ar$). Thus, the possibility exists that MeOCMe₂NO₂ (from electron transfer between MeOCMe₂NO₂·- and BrCMe₂NO₂) might be an intermediate in reaction (1) provided it is rapidly converted into Me₂C(OMe)₂·. However, for *p*-ClC₆H₄SCMe₂NO₂,⁶ a reasonable model for MeOCMe₂NO₂, nitrite ion displacement was not seen to occur in the dark, while u.v. photolysis gave only a low yield of Me₂C(OMe)₂ (Table 1). Instead, with *p*-ClC₆H₄SCMe₂NO₂ in CD₃ONa-CD₃OD a slow dark reaction, unaffected by But₂NO·, yielded *p*-ClC₆H₄S⁻ and Me₂C=NO₂⁻, presumably with the oxidation of methoxide ion.¶ This work was supported by the National Science Foundation (Grant No. CHE-8415453).

Received, 24th August 1987; Com. 1252

References

- 1 N. Kornblum, Angew. Chem., Int. Ed. Engl. 1975, 14, 734.
- 2 G. A. Russell, Adv. Phys. Org. Chem., 1987, 23, 271.
- 3 V. Jagannadham and S. Steenken, J. Am. Chem. Soc., 1984, 106, 6542; J. Eibenberger, D. Schutte-Frohlinde, and S. Steenken, J. Phys. Chem., 1980, 84, 704.
- 4 G. A. Russell, F. Ros, and B. Mudryk, J. Am. Chem. Soc., 1980, 102, 7601.
- 5 G. A. Russell, B. Mudryk, and M. Jawdosiuk, J. Am. Chem. Soc., 1981, 103, 4610; G. A. Russell, B. Mudryk, F. Ros, and M. Jawdosiuk, *Tetrahedron*, 1982, 38, 1059.
- 6 Z. Matacz, H. Piotrowska, and T. Urbański, *Pol. J. Chem.*, 1979, **53**, 187.
- 7 W. R. Bowman and G. D. Richardson, J. Chem. Soc., Perkin Trans. 1, 1980, 1407; W. R. Bowman, D. Rakshit, and M. D. Valmas, *ibid.*, 1984, 2327.

[¶] Reactions of $XCMe_2NO_2$ with ArS^- do not form $Me_2C(SAr)_2$. $Me_2C(SAr)NO_2^{*-}$ in H_2O -MeOH, Me_2SO , or dimethylformamide undergoes electron transfer to $XCMe_2NO_2$ or decomposes to either ArS^- and $Me_2C(NO_2)^*$ or ArS^* and $Me_2C=NO_2^{-.7}$